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The first stage of modeling time series data typically involves processing each input
series individually as needed. Even if we will be using tools such as dynamic factor
models, which accept mixed frequency data, noisy data, and data with missing
observations, there are still series-specific issues which need addressing first. The
two main concerns are stationary and seasonality. We may also wish to standardize
the variance of the data. Non-stationarity due to growth (as opposed to regime
switching, which we will deal with separately) can be dealt with via de-trending
or differencing. De-trending often preserves some of the information contained in
the levels of the data. However, it almost always requires observations both before
and after the current date t. For this reason, it is typically unsuitable for long
horizon forecasting. Differencing, on the other hand, allows us to convey the real
time information in the data without any lag.

1 Frequency Domain in Brief

Most of our analysis will deal with realizations of observables Yt relative to one
or more observations of Yτ at other points in time. That is, we will be dealing
primarily with time domain techniques. Frequency domain provides an alternative
approach to analyzing time series data as a weighted sum of period functions.
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Following the notation in Hamilton (1994):

(1) yt = µ+

∫ π

0

α(ω) cos(ωt)dω +

∫ π

0

δ(ω) sin(ωt)dω

1.1 The Population Spectrum

Our interest lies in analyzing the series yt described as a periodic function such as
that in (1). To this end, we can use Euler’s formula to write (1) as

yt =
1

2

∫ π

0

eiωt
(
α(ω)− iδ(ω)

)
dω +

1

2

∫ π

0

e−iωt
(
α(ω) + iδ(ω)

)
dω

By defining a new function Z(ω) we can combine the above integrals in one integral
from −π to π so that

yt =

∫ π

−π
eiωtZ(ω)dω

where for ω >= 0, Z(ω) = α(ω)− iδ(ω), and for ω < 0, Z(ω) = α(−ω) + iδ(−ω).
The complex conjugate of Z(ω) is then

Z(ω) = α(ω) + iδ(ω), ω >= 0

Z(ω) = α(−ω)− iδ(−ω), ω < 0

Using the fact that E(x, x) = E(x, x̄), we can find the variance of yt as

(2)

γk = E(ytyt−k)

= E(ytȳt−k)

=
∫ π
−π e

iωtZ(ω)dω
∫ π
−π e

−iωtZ(ω)dω

=
∫ π
−π e

iωkE
(
Z(ω)Z(ω)

)
dω

Defining s(ω) = E
(
Z(ω)Z(ω) we then have

γk =

∫ π

−π
eiωks(ω)dω

Using Euler’s formula again, we can write eiωk = cos(ωk) so that

(3) γk = 2

∫ π

0

cos(ωk)s(ω)dω
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Of course, we do not yet know what s(ω) is. One could invert (3). The solution is

(4) s(ω) =
1

2π

∞∑
k=−∞

e−iωkγk

This is the population spectrum. To check this solution, we can plug it into (3)
above. Thus we have

γk =

∫ π

−π
eiωk

(
1

2π

∞∑
j=−∞

e−iωjγj

)
dω

Isolating the terms that contain ω we have

γk =
1

2π

∞∑
j=−∞

γj

∫ π

−π
eiω(k−j)dω = γk

The last equality come from the fact that for k = j the integral∫ π

−π
eiω(k−j)dω = 1

and for k 6= j the integral ∫ π

−π
eiω(k−j)dω = 0

Using Euler’s formula, and noting that for a covariance-stationary process γj =
−γj, we can simplify the result for s(ω) as follows:

sy(ω) = 1
2π
ω0(cos(0)− i sin(0))

+ 1
2π

(∑∞
j=1 γj(cos(ωj) + cos(−ωj)− i sin(ωj)− i sin(−ωj))

)
= 1

2π

(
γ0 + 2

∑∞
j=1 γj cos(ωj)

)
As an example of working with equation (3), suppose only the first three autoco-
variances γ0, γ1, γ2 are non-zero:

sy(ω) =
1

2π

(
γ0 + 2

(
γ1 cos(ω) + γ2 cos(2ω)

))
Letting k = 0 we have∫ π

−π sy(ω) cos(0)dω =
∫ π
−π

1
2π

(
γ0 + 2

(
γ1 cos(ω) + γ2 cos(2ω)

))
dω

= 1
2π
γ0ω
∣∣∣π
−π

+ 2
(
γ1 sin(ω) + γ2 sin(2ω)

)∣∣∣π
−π

= 2π
2π
γ0
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For k = 1 we will need to use the identities cos2(x) = (cos(2x) + 1)/2 and
cos(x) cos(y) =

(
cos(x− y) + cos(x+ y)

)
/2. Then∫ π

−π sy(ω) cos(ω)dω =
∫ π
−π

1
2π

(
γ0 + 2

(
γ1 cos(ω) + γ2 cos(2ω)

))
cos(ω))dω

The first term will be∫ π

−π

1

2π
γ0 cos(ω) =

1

2π
γ0 sin(ω)

∣∣∣π
−π

= 0

Dealing with the second term,

=
∫ π
−π

1
π

(
γ1 cos2(ω) + γ2 cos(2ω) cos(ω)

)
dω

=
∫ π
−π

1
π

(
γ1(cos(2ω) + 1) + γ2 cos(ω) + γ2 cos(3ω)

)
dω

= 1
π

(
γ1(1

2
sin(2ω) + ω)

∣∣∣π
−π

+ γ2 sin(ω)
∣∣∣π
−π

+ γ2
1
3

sin(3ω)
∣∣∣π
−π

)
= γ1

Recalling that sy(ω) is symmetric, the above is equivalent to

γk = 2

∫ π

0

sy(ω) cos(ωk)dω

1.2 Relationship to the Autocovariance Generating Func-
tion

Recall that for the MA(1) process

(5) yt = µ+ εt + bεt−1

the variance is (1 + b2)σ2, first autocovariance was bσ2 and all higher autocovari-
ances were zero. For the MA(2) process

yt = µ+ εt + b1εt−1 + b2εt−2

we have, letting γi denote the ith covariance

γ0 = (1 + b2
1 + b2

2)σ2

γ1 = (b1 + b1b2)σ2

γ2 = b2σ
2
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More generally, for the MA(q) function

yt = µ+ εt + b1εt−1 + b2εt−2 + . . .

the autocovariances are

γ0 = (1 + b2
1 + b2

2 + . . .+ b2
q)σ

2

γ1 = (b1 + b1b2 + . . .+ bq−1bq)σ
2

...
γq = bqσ

2

From this result it will be convenient to define an autocovariance generating func-
tion (again following Hamilton (1994))

(6) gy(z) =
∞∑
−∞

γjz
j

For our MA(1) process this function is

gy(z) = bσ2z−1 +
(
(1 + b2)σ2

)
z0 + bσ2z1

= σ2(1 + bz)(1 + bz−1)

For the more general MA(q) case we can write the autocovariance generating
function as

gy(z) = σ2(1 + b1z + b2z
2 + . . .+ bqz

q)(1 + b1z
−1 + b2z

−2 + . . .+ bqz
−q)

This function is not particularly useful as it stands. However, by letting

z = cos(ω)− i sin(ω) = e−iω

where i =
√
−1 and the second equality is Euler’s formula, and defining

(7) sy(ω) =
1

2π
g(e−iω) =

1

2π

∞∑
−∞

γje
−iωj

we have the population spectrum of y.

1.3 Analysis via the Spectrum

The above results are interesting, but not yet very useful. Recall the original goal
of this exercise is to explain the process yt as a periodic function. This raises a
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few questions. First, why the form of equation (1)? That is, why a function of
cos(ω(t)) and sin(ω(t)) over 0 to π? The reason we look at the function from 0
to π is that this describes one half of a full cycle, as illustrated below. Because
cycles are symmetric, 0 to π is all we need; π to 2π will be identical, just with the
opposite sign.

sin function, blue dash, and cos function, red solid

Moreover, we need both the sin and cos function as we would be unable to describe
yt with just one; for example the value of cos(π/2) is zero. We could, of course,
have done the same over the interval [−π/2, π/2], it simply convention to use [0, π].

The results derived in the previous section were for the population yt. Suppose
instead we simply had nine observations of yt, and wanted to explain our observa-
tions in terms of evenly spaced points along [0, π], which we will call ωj. To ensure
the ωj’s are evenly distributed, their values will be

ω1 = 2π
T

ω2 = 4π
T

ω3 = 6π
T

ω4 = 8π
T
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where T = 9. The discrete version of equation (1) is

(8) yt = µ+
J∑
j=1

(
αj cos(ωj(t− 1)) + δj sin(ωj(t− 1))

)
+ ut

Since we have nine observations and nine parameters (µ, αj, and δj for j ∈ [1, 4]),
we can fit equation (8) perfectly. We can then write the sample variance as

1

T

T∑
t=1

(yt − ȳt) =
1

2

J∑
j=1

(α2
j + δ2

j )

where the part of the variance due to cycles at frequency ωj is

1

2
(α2

j + δ2
j )

From the previous results, this will be equivalent to

4π

T
ŝy(ωj)

where ˆs(ω) is our estimate of s(ω), called the sample periodogram.

Of course in practice, we would not want to estimate the parameters of (8) this
way, but use a much larger sample of yt. This can be done via non-parametric or
kernal estimates of the autocovariances and applying the results of section 1.2; see
Hamilton (1994).

A closer look at equation (8) is helpful in exploring what the spectrum of a process
tells us. For a large T , ω1 will be close to zero. Thus the terms ω1(t− 1) will grow
slowly as t becomes larger. Put differently, α1 and δ1 measure low frequency
movements in y — ω1(t − 1) won’t reach 2π, a full cycle, until the very end of
the sample (obviously the term never quite reaches 2π). At the other end of the
spectrum, ωT (t − 1) cycles through π nearly every period t (and 2π nearly every
other period); terms on ωT therefor describe high frequency movements of yt.

As an example, we could calculate the spectrum of MA(2) process

yt = ε+ 2εt−1 + εt−2

as follows. We have
γ0 = (1 + 4 + 1)σ2

γ1 = (2 + 2)σ2

γ2 = 1σ2
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thus

s(ω) =
1

2π

(
5 + 2(4 ∗ cos(ω) + cos(2ω))

)
The following figure plots this function for σ = 1:

Spectrum for a simple MA(2) process

Note that from our earlier results in (3), the area under the curve sums to the total
(unconditional, or γ0) variance of the process for yt. Thus the variance of yt is due
primarily to cycles at low frequency, with the contribution from high frequencies
approaching zero.

2 Univariate Filters and Trend Estimation

The discussion of spectral analysis above is a method for evaluating univariate
data and univariate filters. If for example, we found a high proportion of variance
in a series due to cycles at an annual frequency, we may wish to remove this
seasonality before performing further analysis. Alternatively, we may wish to
remove low frequency volatility in the data, such as a trend, to isolate seasonal or
business cycle components. Keep in mind, however, that de-trending in this way
to enforce stationarity typically depends on both past and future values, and is
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thus inappropriate for forecasting (we will normally difference data instead). The
following sections discuss a number of ways to accomplish these aims by filtering
data. Discussion of the last method, Kalman filtering, is particularly detailed
as the multivariate Kalman filter will become one of the main tools we use for
analysis.

2.1 HP Filter

Suppose we can decompose our observations for a series yt as

(9) yt = τt + ct + εt

where τt is a trend, ct cyclical components of the data, and εt idiosyncratic com-
ponents. The Hodrick-Prescott filter optimizes the loss function

(10) min
τ

{
T∑
t=1

(yt − τt)2 + λ
T−1∑
t=2

(
(τt+1 − τt)− (τt − τt−1)

)2
}

The first term penalizes deviations in τ from the observed series yt. The second
term penalizes volatility in τ , and λ determines the magnitude of this penalty
on volatility. Thus, as λ increases the estimated series for τ becomes smoother.
The filter has the advantage of a simple, straightforward interpretation. However,
James D. Hamilton, author of Hamilton (1994) (one of the main references for
these notes) advises against using the HP filter for several reasons, including a
tendency to produce spurious correlations and the existence of better alternatives.

2.2 Bandpass Filter

A bandpass filter is a filter that attempts to preserve variation in a series yt for a
given frequency, and remove variance from cycles at other frequencies. A low pass
filter preserves variance from low frequency cycles (such as trends), which a high
pass filter preserves variance from high frequency cycles.

Suppose we have a filter

(11) h(L)yt = (1− L− L2 − . . .)yt
where L is the lag operator. For example, we would write the first difference of yt
as

xt = (1− L)yt
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If yt has the autocovariance generating function gy(z), then the autocovariance
generating function for xt will be

(12) gx(z) = h(z)h(z−1)gy(z)

This is useful as we already know from section 1 that we can write the spectrum
of a process as

s(ω) =
1

2π
g(e−iw)

Thus the spectrum of the new process is

sx(ω) = h(e−iw)h(eiw)sy(ω)

For the example of differencing the data

h(e−iωeiω) = (1− e−iω)(1− eiω)
= 1− e−iω − eiω + 1
= 2− 2 cos(ω)
= 2(1− cos(ω))

The following figure plots this result over [0, π].

Transformation due to taking first differences
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The is an example of a high-pass filter: low frequency cycles are removed and high
frequency cycles are amplified. As a second example we can look at taking year
on year differences. In this case we have (for monthly data) h(L) = 1− L12

h(e−iωeiω) = (1− e−12iω)(1− e12iω)
= 1− e−12iω − e12iω + 1
= 2− 2 cos(12ω)
= 2(1− cos(12ω))

The following figure plots this result over [0, π].

Transformation due to taking year on year differences

Thus the year on year filter removes not only low frequencies and annual (12
month), but also frequencies at 6, 4, 2, 2.4, and 2 months!

2.3 L1-Norm Filters

The loss functions we typically use in econometrics minimize mean squared error.
For example, we can derive the OLS estimator by minimizing

l =
N∑
i=1

(yi − βxi)2
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This loss function is l2, 2 because the loss function is squared. There are times,
however, when we may wish to minimize an absolute value, not a squared value.
This represents l1 loss. For example, lasso models are a popular means of shrinking
parameter estimates to avoid problems of overparameterization (results can be
similar to using a zero prior for Bayesian models, which we will come to later).
Penalties on parameters can be l2, that is

λ

k∑
i=1

β2
i

which will shrink all parameter estimates towards zero, or l1

λ
k∑
i=1

|βi|

which will select parameters by setting some to zero and leaving others unchanged,
or a mix of the two.

We can do something similar with the HP filter, using an l1 loss instead of the
standard l2 loss. That is, equation (10) becomes

(13) min
τ

{
T∑
t=1

(yt − τt)2 + λ
T−1∑
t=2

∣∣∣(τt+1 − τt)− (τt − τt−1)
∣∣∣}

The resulting trend will be peicewise linear. There are a few reasons this may be
desirable. First, it may be convenient to have a locally linear trend. Second, shifts
in a linear trend provide a nice corollary to the idea of regime shifts, which we will
come to later.

2.4 Kalman Filtering

Kalman filtering and smoothing will become our workhorse method for later mod-
els, in particular for dynamic factor models (DFMs) and for variations of standard
models, like VARs, written to incorporate missing, noisy, or mixed frequency data.
For that reason we will cover the univariate filter in some detail here.

Kalman filtering, named for Kalman (1960), is a means of estimating the time
series model

(14) yt = Hxt + εt
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(15) xt = Axt−1 + et

where xt is an unobserved state or states, yt observed outcomes, and εt and et are

normally distributed error terms with the covariance matrix cov

[
et
εt

]
=

[
Q 0
0 R

]
.

States, observed outcomes, and error terms can be either scalars or vectors. The
Kalman filter works by first predicting an outcome xt|t−1 where the subscripts
indicate the prediction of xt based on all observations from the initial period until
period t − 1 and then updating this prediction using the outcome from period t.
Formally, we first predict

(16) p(xt|y1:t−1) =

∫
p(xt, xt−1)p(xt−1|y1:t−1)dxt−1

and then update this prediction based on the current observation yt

(17) p(xt|yt) ∝ p(yt|xt)p(xt|y1:t−1)

In this way equation 17 is a Bayesian estimate of our unobserved states xt using
equation 16 as our prior. Before writing down what the prediction and updating
equations will in fact be when our model follows 15 and 14, it’s worth looking at
a few features of the multivariate normal distribution.

2.4.1 Preliminaries

Suppose we know that the scalars x and y follow the multivariate normal distri-
bution

(18)

[
x
y

]
∼ N

([
µ
m

]
,Σ

)

where Σ =

[
P C
C S

]
and we’re interested in determining the distribution f(x|y).

Using the definition of a conditional distribution we know that

f(x|y) =
f(x, y)

f(y)

or, since f(y) is a normalizing constant,

f(x|y) ∝ |Σ|−
1
2 exp

{
−1

2

([
x− µ
y −m

]′
Σ−1

[
x− µ
y −m

])}
13



The inverse of the covariance matrix is Σ−1 = 1
PS−C2

[
S −C
−C P

]
thus the expo-

nential terms are

− 1

2(PS − C2)
[(x− µ)2S + (y −m)2P − 2(x− µ)(y −m)C]

We can re-write this expression as

− 1

2(PS − C2)
[(y−m)2P+(x−µ−(y−m)CS−1)S(x−µ−(y−m)CS−1)−(y−m)2C2S−1]

or, dumping the terms which don’t contain our parameter of interest x into the
normalizing constant,

(19) − 1

2
[(x− (µ+ (y −m)CS−1))P̃−1(x− (µ+ (y −m)CS−1))]

where P̃ = P − C2S−1. f(x|y) is therefore normally distributed with mean (µ +
(y −m)CS−1) and variance P̃ = P − C2S−1. This result generalizes to the case

in which x and y are vectors with covariance matrix Σ =

[
P C
C ′ S

]
as

E(x|y) = µ+ CS−1(y −m)

and
V ar(x|y) = P − CS−1C ′

These results are essentially all we need to derive the Kalman filter.

2.4.2 The Kalman Filter

To use the results from section 2.4.1 requires two elements. The first is our model,

equations (15) and (14). The second is the distribution for

[
xt|t−1

yt

]
; this is not as

obvious as it may seem since we never in fact observe xt (or xt−1). Therefore we
need to define a new variable, call it xt|t, which is our predicted value of xt given
observations y1:t. Define the variance var(xt|t) = Et|t(xt − xt|t)(xt − xt|t)′ as Pt|t
and the variance var(xt|t−1) (xt given observations 1 : t − 1) as Pt|t−1. Then the
joint distribution for xt|t−1 and yt is[

xt|t−1

yt

]
= N

([
Axt−1|t−1

H(Axt−1|t−1)

]
,Σt

)
14



where

Σt =

[
Pt|t−1 Ct
C ′t St

]
From the results in section 2.4.1 we can immediately calculate the expected value of
xt|t−1 (which is unobserved) given yt (which is observed), E(xt|t−1|yt) = Axt−1|t−1+
CtS

−1
t (yt − H(Axt−1|t−1)), as well as var(xt|t−1|yt) = Pt|t = Pt|t−1 − CtS

−1
t C ′t.

However, we still need to derive the values for Σ. From equation (15)

Pt|t−1 = var(xt|t−1)

= var
(
Axt−1|t−1 + et

)
= APt−1|t−1A

′ +Q

From equation (14) the variance of our predicted values for yt will be

St = var(yt)

= var
(
Hxt|t−1 + εt

)
= HPt|t−1H

′ +R

And finally

Ct = cov(xt|t−1, yt)

= cov
(
Axt−1|t−1 + et, Hxt|t−1 + εt

)
= cov

(
Axt−1|t−1 + et, H(Axt−1|t−1 + et) + εt

)
= Pt|t−1H

′

Thus equipped we can write the Kalman filter as follows. Our prediction for the
mean and variance of xt (without conditioning on yt) is

xt|t−1 = Axt−1|t−1

Pt|t−1 = APt−1|t−1A
′ +Q

Our prediction for the mean and variance of yt given observations 1 : t− 1 (before
yt is observed), denoted yt|t−1, is

yt|t−1 = Hxt|t−1

St = HPt|t−1H
′ +R

Our prediction for the covariance between xt (again, without using yt) and yt|t−1

is
Ct = Pt|t−1H

′

15



Note that the Kalman gain combines this covariance and the estimated variance
of yt|t−1 and is typically written as Kt = CtS

−1
t . The above equations, called

the prediction step, give us our prior. Our posterior estimates for the mean and
variance of xt given yt (recall yt is observed), called the updating step, are

xt|t = xt|t−1 + CtS
−1
t (yt|t − yt|t−1)

Pt|t = Pt|t−1 − CtS−1
t C ′t

2.4.3 The Likelihood Function

We can write the likelihood of observing
{
y1 y2 . . . yT

}
as

f(y1:T ) = f(yT |y1:T−1)f(y1:T−1) = f(yT |y1:T−1)f(yT−1|y1:T−2)f(y1:T−2) =
T∏

t=1

f(yt|y1:t−1)

where f(yt|y1:t−1) is normally distributed with mean yt|t−1 and variance St. De-
noting the predictive error calculated by the Kalman filter in each period as
νt = yt|t − yt|t−1 we can thus write the likelihood of our observables as

L =
T∏
t=1

(2π)−k/2|St|−
1
2 exp

{
−1

2
ν ′tS

−1
t νt

}
so that the log likelihood, which we typically use for any maximization problem,
is

(20) l = κ− 1

2

T∑
t=1

log(|St|)−
1

2

T∑
t=1

ν ′tS
−1
t νt

where κ does not contain any parameters of interest and can thus be ignored in
the maximization problem. The log likelihood is remarkably easy to calculate in
practice as both νt and St are calculated in each period by the Kalman filter.

2.4.4 A Kalman Smoother

What the Kalman filter of the previous section delivers are estimates of xt|t, that
is, an estimate of xt given observations from period 1 through t. However, if the
states of the model are autocorrelated then presumably observations realized after
period t also contain information about states in period t. The Kalman smoothers
provide a means of employing this information so that our final estimate of states
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becomes xt|T , that is, an estimate of xt given observations from period 1 through
T . There are several approaches to Kalman smoothing; I’ll outline the simple
and popular Rauch-Tung-Striebel smoother. The process begins by running the
Kalman filter and saving the values for Pt|t−1, Pt|t, xt|t−1, and of course xt|t. The
key to the smoother is the fact that f(xt|xt+1, y1:T ) = f(xt|xt+1, y1:t), which states
that if we know xt+1 then further realizations of observables after period t do not
add any additional information. We can summarize the relationship between xt|t
and xt+1|t as

(21)

[
xt|y1:t

xt+1|y1:t

]
∼ N

([
xt|t
xt+1|t

]
,

[
Pt|t Pt|tA

′

A′Pt|t Pt+1|t

])
where Pt+1|t = APt|tA

′+Q. Using the same results for a joint normal distribution
we used to derive the Kalman filter we then have1

E(xt|xt+1, y1:t) = xt|T = xt|t + gt(xt+1 − xt+1|t)
V ar(xt|xt+1, y1:t) = Pt|T = Pt|t − gtPt+1|tg

′
t

where gt = Pt|tA
′P−1
t+1|t. Since we do not in fact observe xt+1 we need to slightly

modify the above equations. Using the law of iterated expectations for the first

(22) E(xt|y1:T ) = E(E(xt|xt+1, y1:t)|y1:T ) = xt|t + gt(xt+1|T − xt+1|t)

Using the law of iterated variance for the second

(23)

V ar(xt|y1:T ) = E(V ar(xt|xt+1, y1:t)|y1:T ) + V ar(E(xt|xt+1, y1:t)|y1:T )
= Pt|t − gtPt+1|tg

′
t + gtPt+1|T g

′
t

= Pt|t − gt(Pt+1|t − Pt+1|T )g
′
t

Equations (22) and (23) form our smoother. We begin using our last filtered value
for µT |T and PT |T and iterate backwards to the first period.

2.4.5 The Steady State Filter

Note that in the above Kalman filter neither Pt|t, St, nor Ct depend on the real-
ization of yt or the expected values of xt (they do, however, depend on the number

1The result for Pt|T comes from the fact that

V ar(xt|xt+1, y1:t) = Pt|t − Pt|tA
′P−1t+1|tAPt|t

= Pt|t − Pt|tA
′P−1t+1|tPt+1|tP

−1
t+1|tAPt|t

= Pt|t − gtPt+1|tg
′
t
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of series observed each period). Thus, if our series is covariance stationary, the
number of observations remains the same each period, and if we happen to know
the long run value of Ct, call it C, and St, call it S, we could simplify our Kalman
filter as

(24)
µt|t−1 = Aµt−1|t−1

mt|t−1 = Hµt|t−1

µt|t = µt|t−1 + CS−1(yt|t −mt|t−1)

This is the steady state Kalman filter. To obtain these steady state values, we can
simply run the system of difference equations that determine the relevant variances
and covariances until convergence. This system is

(25)

Pt|t−1 = APt−1|t−1A
′ +Q

St = HPt|t−1H
′ +R

Ct = Pt|t−1H
′

Pt|t = Pt|t−1 − CtS−1
t C ′t

2.4.6 Initial Values

Notice that in section 2.4.2 we said that since we don’t know xt, we can predict
it with xt−1|t−1, and similarly we use Pt−1|t−1 to calculate the variance of this pre-
diction. This kicking-the-can-down-the-road approach runs into a problem at our
first observation; what do we use for x0|0 and P0|0. There are numerous approaches
to dealing with initial values. The simplest is to follow that outlined by Hamilton
(1994) and use the long run mean and its associated variance. The results in the
section have assumed our matrix of observables is demeaned, so that the long run
value for factors x0|0 will be zero. The variance is slightly more involved. Begining
with an observation of xp at some time in the past, the variances Pp+i|p will be

Pp+1|p = Q
Pp+2|p = AQA′ +Q
Pp+3|p = AAQA′A′ + AQA′ +Q

...

Defining Mi = Pp+i|p for notational convenience,

M1 = Q
M2 = AM1A

′ +Q
M3 = AM2A

′ +Q
...

M∞ = AM∞A
′ +Q
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The solution to M∞ = AM∞A
′ +Q is

(26) vec(M∞) = A−1vec(Q)

where
A = (I − A⊗ A)

and I is an identity matrix of k × k where k is the number of factors in xt, and
⊗ is the Kronecker product. M∞ is thus the variance of x0|0 that we can use to
initialize our filter.

2.4.7 An Example

Suppose we have a model described by

xt =

[
1 −.5
.1 .7

]
xt−1 + et

yt =


.5 1
−1 2
1 −1
1 −.5

xt + εt

where xt is a 2×1 vector of unobserved factors, yt is a 4×1 vector of observed data,
et ∼ N(0, I2), and εt ∼ N(0, I4) and we would like to construct the unobserved
factors xt from the observed data.

In this case we already know the parameters A, Q, H, and R. Figure 1 plots the
results for 200 observations.

2.4.8 Missing Observations

Using the example from the previous section, suppose the second series in yt is not
observed in a given period t. We can simply re-write our model for the data we do
observe by dropping the rows of H and rows and columns of R corresponding to
the missing data. The dimensions of the unobserved factors xt remain the same,
thus this does not present any problems in updating our factor predictions from
one period to the next. Explicitly, if the second series of xt were missing in period
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Figure 1: True series x1,t versus the series estimated from observations yt

t then our transition equation would become

yt =

.5 1
1 −1
1 −.5


︸ ︷︷ ︸

Ht

xt + εt

and R becomes a 3× 3 identity matrix.

If all the observations are missing for a period t, which will be the case when
making out of sample forecasts (as opposed to nowcasts) for example, then we
simply ignore the updating step of our filter. That is, our prediction for next
period factors is

xt|t = Axt−1|t−1

and the variance of this prediction is

Pt|t = APt−1|t−1A
′ +Q

3 ARMA Estimation

An Autoregressive Moving Average, or ARMA model, combines lags of observed
variables with lags of shocks. Note that one often sees references to ARIMA mod-
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els; the I stands for integrated, as in non-stationary. Non-stationarity is typically
dealt with prior to estimation (by differencing or detrending), so we will leave the
I out. A simple example is an ARMA(1,1) model, that is, one AR component and
one MA component

(27) yt = ayt−1 + εt + bεt−1

3.1 MSE Minimization

Estimating models with only AR components is much simpler than those with
MA components due to the fact that the errors εt are unobserved. While one can
estimate AR models (and VAR models) by OLS, that is not true of MA models.
One option is to minimize the loss function

(28) l = (yt − ŷt)2

where ŷt is our estimate of yt. We can then minimize this function over parameters
and pre-sample values of shocks. For example, we can minimize the loss function
(28) for (27) over a, b, and ε−1. Alternatively, we can treat pre-sample values of
shocks, ε−1 in this example, as zero.

3.2 Maximum Likelihood Estimation

Assuming normally distributed error terms, we can write the log likeihood for our
ARMA model as

L(θ) = −T
2

log(2π)− T

2
log(σ2)−

T∑
t=1

εt
2σ2

The log likelihood requires estimating the additional parameter σ2, the variance
of the shocks εt. As before, we can also include pre-sample values of shocks in the
parameter vector, or, as suggested by Box and Jenkins (1970), we can set these
pre-sample shocks to zero.

Alternatively, we can cast our ARMA(p,q) model in state space form and use
the tools developed in section 2.4.2. There is more than one way to cast our
ARMA(1,1) model in state space, but one possibility is to use the observation
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equation

yt =
[
1 1

] [xt
εt

]
and the transition equation[

xt
εt

]
=

[
a b
0 0

] [
xt−1

εt−1

]
+

[
εt
εt

]
The (log) likelihood function for this model is given by (20), which we can maximize
for the parameters a, b, and the variance of shocks σ2. This formulation has the
added advantage that it automatically deals with missing values in yt.

3.3 Seasonal ARMA Models

Instead of looking at the impact of past values in periods t − 1 through t − p or
past shocks in periods t − 1 through t − q on our observed series yt, we may be
interested in what happened to our series one year ago, for example. This allows
us to capture seasonal variations in our data. We’ll follow convention and denote
such a model an SARMA(p,q)(P,Q) model where the upper case P and Q denote
seasonal lags. For example, suppose we had monthly data and wanted to fit an
SARMA(1,0)(1,1) model. We can write this model as

(29) yt = ayt−1 + cyt−12 + εt + hεt−12

The SARMA(1,0)(1,2) model will be

yt = ayt−1 + cyt−12 + εt + h1εt−12 + h2εt−24

and so on. To remove the impact of seasonality in our observe series yt, we can
remove the estimated components for seasonal lags. Thus for 29, our seasonally
adjusted series will be

ySAt = yt − cyt−12 − hε̂t−12

This may seem like a complicated way to get at seasonality. Why not, for example,
use dummy variables, with a dummy for each month? There are a few advantages
to seasonal ARMA estimates. First, we will typically have fewer parameters to
estimate; dummies on months will only really be viable with a large number of
years. Second, seasonal ARMA estimation allows seasonal effects to fluctuate over
time; dummies assume the seasonal volatility will be the same every period. Thus
if the seasonal impact of, for example, summer holidays is diminishing over time,
our seasonal ARMA will capture some of that change.
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Note that estimation of seasonal ARMA models by Kalman filtering may not be
practical due to the fact that casting the model in state space requires continues
lags, i.e. t− 1 through t− 12, for example. Mean squared error estimation allows
us to only include seasonal lags of interest, and not everything inbetween.

4 Seasonal Adjustment

In practice, seasonal adjustment is typically more involved than the simple process
outlines in section 3.3. One big challenge is the fact that ARMA models require
stationarity, while much of the raw data we work with is non-stationary. While
differencing data will be our normal approach to this issue for forecasting, de-
trending tends to be more effective for seasonal adjustment. Moreover, extreme
values (outliers) may skew estimates of adjustments. For these reasons, seasonal
adjustment is typically an iterative process in which we will:

1. estimate a trend of the (log) data and remove the trend to get a stationary
series;

2. estimate a seasonal ARMA model on the stationary series and save seasonal
factors;

3. remove or reduce any outliers — extreme values of error terms in our SARMA
model;

4. remove seasonal factors from (log) level data;

5. repeat steps 1-4 until we are satisfied with the resulting seasonally adjusted
data.

For monthly or lower frequency data the U.S. Census Bureau’s X-13ARIMA-
SEATS software is freely available and included in some statistical software such
as IRIS for Matlab or the seasonal package in R. For higher frequency data, we
will need to implement our own version of this process.

5 Further Reading

Hamilton (1994) is the main reference for most of the material in these notes,
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particularly sections 1 and 2.2. For Kalman filtering, smoothing, and state space
methods Durbin and Koopman (2012) is the definitive reference. Ljungqvest and
Sargent (2012) Chapter 2 also covers the material in these notes, though the ori-
entation is more towards theoretical applications.
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